Navigation menu:

Home

Editorial Board

Contact

Volume 4 (2020)


Systematization of data on the modern threat of slagheaps

K. Zvoryhin1 & O. Kovrov1

Purpose

Improve the technology of phytoremediation of degraded lands in mining regions.

Methodology

The research was carried out by studying an extensive knowledge base, studying practical application in Ukraine and European countries.

Findings

The dependences of the impact slagheaps on the environment were considered based on the method of their reclamation [1-4]. The environmental hazard of the process of the influx of rock, which is washed away or blown out of the slagheaps into the surrounding territory, is determined by the high content of heavy metals in the rock, especially Ni, Pb, and Cu, with an excess of the MPC of the mobile form by 1.5-2.5, 3.5, respectively -7 and 3.3-5 times [4-7]. The potential annual deflationary removal of rock reaches 157 tons per hectare of slagheap surface. From each hectare of the slagheap surface, 122.5 kg of heavy metals are washed out annually. Changes in the factors of rain erosion – the amount of atmospheric precipitation, their distribution by months of the warm season of the year, the frequency of rains of various heights over the past 60 years in the east of Ukraine. It was concluded that the calculated soil washout increased by 1.4 times. Therefore, afforestation of slagheaps, carried out when they are included in the regional eco-network, preventing the removal of rock from their surface, radically reduces the ecological hazard of the slagheaps, minimizes internal combustion and stabilizes the landscape from possible landslides. The phytoremediation technology in this case will help to controllably extract heavy metals from waste rock [7-10].

They contain the researches, which were conducted within the project GP – 505, financed by Ministry of Education and Science of Ukraine.

Keywords: slagheap, phytoremediation, recultivation, environmental protection

References
  1. Kolesnik, V.Ye., Fedotov, V.V., Buchavy, Yu.V. (2012). Generalized algorithm of diversification of waste rock dump handling technologies in coal mines. Scientific bulletin of National Mining University, (4), 138-142.
  2. Popovych, V., Pidhorodetsky, Y., Pinder, V. (2016). The typology of heaps of Lviv-Volyn coal basin. Scientific Bulletin of UNFU, 26 (8), 238-243.
  3. . Pavlychenko, A., Buchavyy, Y., Fedotov, V., & Rudchenko, A. (2017). Development of methodological approaches to environmental evaluation of the influence of man-made massifs on the environmental objects. Technology Audit and Production Reserves, 4(3(36)), 22-26. https://doi.org/10.15587/2312-8372.2017.109243
  4. Zubov, О., Zubova L. (2016). Use of Waste Dumps of Coal Mines as an Elements of the Ecological Network. Охрана, восстановление и изучение степных экосистем в XXI веке: Международная научно–практическая конференция, посвященная 90-летию со дня основания заповедника «Хомутовская степь», 24-26 августа 2016, 33-34.
  5. Zubov, О., Zubova L. (2011). Protecting Donbass landscapes from the ingress of pollutants from the dumps of coal mines. Уголь Украины, 40-46.
  6. Zubov, О., Zubova L. (2020). Влияние изменения климата на факторы водной эрозии в донбассе. Лесная мелиорация и эколого-гидрологические проблемы Донского водосборного бассейна, 521-525.
  7. Awadhesh S., Yogendra S., Vinod P. (2020). Phytoremediation of Pollutants from Soil. Plant Responses to Soil Pollution, 155-161.
  8. Klimkina I., Kharytonov M., Wiche O (2017). Phytoremediation of spoil coal dumps in Western Donbass (Ukraine), 48-53.
  9. Бровко Ф. (2012). Сучасні проблеми та здобутки лісової рекультивації відвальних ландшафтів в Україні. (1). http://nbuv.gov.ua/UJRN/licgoc_2012_1_6
  10. . Дурсун, Ш., Симочко, Л. Ю., & Манколлі, Х. (2020). Bioremediation of heavy metals from soil: an overview of principles and criteria of using. Agroecological Journal, 0(3), 6-12. https://doi.org/10.33730/2077-4893.3.2020.211521