Navigation menu:

Home

Editorial Board

Contact

Volume 4 (2020)


Influence ofdeformation parameters on drill string dynamics

I. Chudyk1 & Ja Grydzhuk1

Purpose

Identifying the causes of additional energy consumption for deformation of the drill string.

Methodology

The study was conducted by analyzing the causes of deformations and justifying their impact on the dynamic parameters of the drill string.

Findings

The main deformations of the drill string are compression and tension of its sections in the axial direction, transverse bending of sections due to loss of stability, spiral twisting from axial load and torque, as well as curvature in curved sections of the well. The parameters of these deformations are the length of the half-wave and the bending arrow, the twist angle, length, pitch and curvature of the helical spiral, as well as the radius of curvature of the curved sections. The amplitude of the half-wave bending of the drill string is much larger than the cross-sectional radius of the wellbore, even at low and rotation speeds. As the rotation speed of the column increases, the amplitude of bending increases, the clamping forces of the half-wave ridges increase, which causes an increase in the amount of torque and, accordingly, the mechanical energy for its rotation. There is also an ovalization of cross sections of drill pipes due to the precessive rotation of sections of the column in the well. Due to ovalization, the position of the centers of mass of the cross sections of the columns and the hodograph of the forces of inertia changes. Ovalization significantly affects the change in the area of contact of the bent section of the drill string with the wall of the well and the pressure on the latter.

The study was conducted as part of state research work 0117U007105.

Keywords: drill string, deformation, energy, oscillations, stability

References
  1. Grydzhuk, J., Chudyk, I., Velychkovych, A., Andrusyak, A. Analytical estimation of inertial properties of the curved rotating section in a drill string (2019) Eastern-European Journal of Enterprise Technologies, 1(7-97), 6-14. https://doi.org/10.15587/1729-4061.2019.154827
  2. Chudyk, I., Raiter, P., Grydzhuk, Y., & Yurych, L. (2020). Mathematical model of oscillations of a drill tool with a drill bit of cutting-scraping type. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 52-57. https://doi.org/10.33271/nvngu/2020-1/052
  3. Kryzhanivskyi, E.І., Nykyforchyn, H.М., Student, О.Z., Krechkovska, H.V., & Chudyk, І.І. (2020). Role of Nonmetallic Inclusions in Premature Stress-Corrosion Fractures of Drill Pipes. Materials Science, 55 (6), 822-830.
  4. Vytyaz, O., Chudyk, I., & Mykhailiuk, V. (2015). Study of the effects of drilling string eccentricity in the borehole on the quality of its cleaning. New Developments in Mining Engineering 2015, 591-595. https://doi.org/10.1201/b19901-102
  5. Steliga, I., Grydzhuk, J., & Dzhus, A. (2016). An experimental and theoretical method of calculating the damping ratio of the sucker rod column oscillation. Eastern-European Journal of Enterprise Technologies, 2(7(80)), 20. https://doi.org/10.15587/1729-4061.2016.66193
  6. A Dreus, A., Kozhevnikov, A., Lysenko, K., & Sudakov, A. (2016). Investigation of heating of the drilling bits and definition of the energy efficient drilling modes. Eastern-European Journal of Enterprise Technologies, 3(7(81)), 41. https://doi.org/10.15587/1729-4061.2016.71995
  7. Ratov B.T., Fedorov B.V., Sudakov A.K., Taibergenova I., Kozbakarova S.M. (2021). Specific features of drilling mode with extendable working elements. E3S Web of Conferences 230, 01013. https://doi.org/10.1051/e3sconf/202123001013
  8. Kozhevnykov A.O., Dreus А.Yu., Baochang Liu, Sudakov A.K. (2018). Drilling fluid circulation rate infuence on the contact temperature during borehole drilling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1(163), 35-43. https://doi.org/10.29202/nvngu/2018-1/14
  9. Davydenko, A.N., Kamyshatsky, A.F., Sudakov, A.K. (2015). Innovative technology for preparing washing liquid in the course of drilling. Science and Innovation 11(5), 5-13. https://doi.org/10.15407/scine11.05.005
  10. Судаков, А.К., Ратов, Б.Т., Хоменко, В.Л., Муратова, С.К., Судакова Д.А., Омирзакова, Э.Ж. (2019). Освоение, эксплуатация и ремонт буровых скважин на жидкие и газообразные полезные ископаемые. Монография. Министерства образования и науки Республики Казахстан, Каспийский общественный университет, 454 с.
  11. FemyakY. M., Fedoriv V. V., Marynchak R. O. (2020). Petrophysical determination model of the collector points by the gamma-gamma-density results and gama-spetkrometric. International Scientific Conference «Geoinformatics 2020». 11– 14 May 2020, Kyiv, Ukraine.
  12. Fedoriv, V., Bagriy, S., Piatkovska, I., Femyak, Y., & Trubenko, A. (2019). Petrophysic model for determin clayness of rocks by the results of complex geophysical researches. 18th International Conference on Geoinformatics - Theoretical and Applied Aspects. https://doi.org/10.3997/2214-4609.201902116
  13. Фем’як Я. М., Фем’як В. Я. (2016). Буріння свердловин з використанням кавітаційно-пульсаційного промивання їх вибоїв. Сборник научных трудов SWorld: международное периодическое научное издание, 2(2(5)), 36-40.
  14. Фем’як Я. М. (2018). Кавітаційно-пульсаційні процеси в інструментах для буріння свердловин. International periodic scientific journal: Modern engineering and innovative technoloies (Germany), 3(1), 135-138.
  15. Фем’як, Я.М. (2020). Прогнозування кавітаційних режимів течії бурового розчину на основі нелінійних коливань кавітаційного пухирця. Organization of scientific research in modern conditions ‘2020: conference proceedings. – Seattle: (May 14-15): KindleDP, 3-7. https://doi.org/10.30888/979-865-1656-02-8.0
  16. Dreus, A. Y., Kozhevnykov, A. A., Liu, B., & Sudakova, D. A. (2019). Approximate analytical model of rock thermal cyclical disintegration under convective cooling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4). https://doi.org/10.29202/nvngu/2019-4/5
  17. Bulat, A., Blyuss, B., Dreus, A., Liu, B., Dziuba S. (2019). Modelling of deep wells thermal modes, Min. miner. depos., 13(1):58-65. https://doi.org/10.33271/mining13.01.058
  18. Cao, X., Kozhevnykov, A., Dreus, A., & Liu, B.-C. (2019). Diamond core drilling process using intermittent flushing mode, Arabian Journal of Geosciences, 12(4). 137. https://doi.org/10.1007/s12517-019-4287-2
  19. Dreus, A., & Kozhevnykov, A. (2019). Innovative Approach to Drilling of Geothermal Deep Wells Using the Heat Factor. Proceedings of 2019 IEEE 6th International Conference on Energy Smart Systems, April 17-19, Kyiv, Ukraine 192–195. https://doi.org/10.1109/ESS.2019.8764208