Navigation menu:

Home

Editorial Board

Contact

Volume 4 (2020)


Advanced technology for rock disintegration using plasma energy

Bulat Anatolii1, Osenniy Valentin1 & Dreus Andrii2

Purpose

Presentation of efficient approach to hard rocks disintegration using a low-temperature plasma jet.

Methodology

The study of plasma technology was carried out by real field experiments and laboratory research.

Findings

Specialists of the Institute of Geotechnical Mechanics of the NAS of Ukraine developed the technology of well reaming by the thermal method using a low-temperature plasma (3000-3500 °C temp of jet). The electric arc plasma generator with gas-vortex stabilization of the direct-current arc of power 150-200 kW was developed as a working tool of the new-generation mining machine. The technology was successfully tested in the real ore-mines of Kryvyi Rih (Ukraine) ore bass.

The studies of the IGTM of the NAS of Ukraine found the basic requirements for the abovementioned technology, which provide high efficiency of this method. The mechanism of the process of thermal brittle fracture of the hard ferruginous quartzites and associated rocks of high hardness and abrasiveness has been studied in ore fields of the mines. It is proved that the thermal (plasma) method is feasible during destruction of hard rocks and associated rocks with the hardness of ƒ =16-18, 20 and more according to Prof. М.М. Protodiakonov scale of hardness at the varying metasomatism. The theoretical fundamentals of rock disintegration process under plasma impact were proposed.

The successful results of technology application make it a promising on future growing worldwide.

Keywords: plasma technology, hard rock disintegration, well reaming

References
  1. Kozhevnykov, A.O., Dreus, A.Yu., Baochang Liu, & Sudakov A.K. (2018). Drilling fluid circulation rate influence on the contact temperature during borehole drilling. Naukovyy visnyk Natsional'noho Hirnychoho Unyversytetu, (1), 35-42. https://doi.org/10.29202/nvngu/2018-1/14
  2. Dreus, A. Yu., Kozhevnykov, A. A., Baochang Liu, & Sudakova, D.A. (2019). Approximate analytical model of rock thermal cyclical disintegration under convective cooling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 42-47. https://doi.org/10.29202/nvngu/2019-4/5
  3. Bulat, A., Blyuss, B., Dreus, A., Liu, B., & Dziuba S. (2019). Modelling of deep wells thermal modes, Min. miner. depos., 13(1), 58-65. https://doi.org/10.33271/mining13.01.058
  4. Cao, X., Kozhevnykov, A., Dreus, A., & Liu, B.-C. (2019). Diamond core drilling process using intermittent flushing mode, Arabian Journal of Geosciences, 12(4). 137. https://doi.org/10.1007/s12517-019-4287-2
  5. Dreus, A., & Kozhevnykov, A. (2019). Innovative Approach to Drilling of Geothermal Deep Wells Using the Heat Factor. Proceedings of 2019 IEEE 6th International Conference on Energy Smart Systems, April 17-19, Kyiv, Ukraine 192–195. https://doi.org/10.1109/ESS.2019.8764208
  6. Kozhevnikov, A.A., & Sudakov, A.K. (2015). Anniversaries of innovative drilling technologies: Reference review . Science and Innovation 11(4), 55-65. https://doi.org/10.15407/scine11.04.055
  7. Dzyubyk, A., Sudakov, A., Dzyubyk, L., & Sudakova, D. (2019). Ensuring the specified position of multisupport rotating units when dressing mineral resources / Mining of Mineral Deposits, 13(4), 91-98. https://doi.org/10.33271/mining13.04.091
  8. Sudakov, А., Dreus, A., Kuzin, Y., Sudakova, D., Ratov B., & Khomenko, O. (2019). A thermomechanical technology of borehole wall isolation using a thermoplastic composite material. E3S Web of Conferences Volume 109, 00098. Essays of Mining Science and Practice. https://doi.org/10.1051/e3sconf/201910900098
  9. Sudakov, A., Dreus, A., Ratov, Б., Sudakova, О., Khomenko, O., Dziuba, S., Sudakova, D., Muratova, S., & Ayazbay, M. (2020). Substantiation of thermomechanical technology parameters of absorbing levels isolation of the boreholes. News of the national academy of sciences of the Republic of Kazakhstan. Series of geology and technical sciences, 2(440), 63-71. https://doi.org/10.32014/2020.2518-170X.32
  10. Khomenko, O.Y., Kononenko, M.M., Myronova, I.G., & Sudakov, А.К. (2018). Increasing ecological safety during underground mining of iron-ore deposits Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, v. 2. р. 29-38. https://doi.org/10.29202/nvngu/2018-2/3
  11. Femyak, Y.M., Fedoriv, V.V., & Marynchak, R.O. (2020). Petrophysical determination model of the collector points by the gamma-gamma-density results and gama-spetkrometric. International Scientific Conference “Geoinformatics 2020”. 11– 14 May 2020, Kyiv, Ukraine.
  12. Fedoriv, V., Bagriy, S., Piatkovska, I., Femyak, Y., Trubenko, А. (2019). Petrophysic model for determin clayness of rocks by the results of complex geophysical researches. Geoinformatics – 13-16 May 2019. Ukraine. Kyiv.
  13. Фем’як, Я.М., & Фем’як, В.Я. (2016). Буріння свердловин з використанням кавітаційно-пульсаційного промивання їх вибоїв. Сборник научных трудов SWorld: международное периодическое научное издание, 2(2(5)), 36-40.
  14. Фем’як, Я.М. (2018). Кавітаційно-пульсаційні процеси в інструментах для буріння свердловин. International periodic scientific journal: Modern engineering and innovative technoloies (Germany), 3(1), 135-138.
  15. Фем’як, Я.М. (2020). Прогнозування кавітаційних режимів течії бурового розчину на основі нелінійних коливань кавітаційного пухирця. Organization of scientific research in modern conditions ‘2020: conference proceedings. – Seattle: (May 14-15): KindleDP, 3-7. https://doi.org/10.30888/979-865-1656-02-8.0
  16. Grydzhuk, J., Chudyk, I., Velychkovych, A., Andrusyak, A. Analytical estimation of inertial properties of the curved rotating section in a drill string (2019) Eastern-European Journal of Enterprise Technologies, 1 (7-97), pp. 6-14. Cited 4 times. https://doi.org/10.15587/1729-4061.2019.154827
  17. Vytyaz, O., Chudyk, I., & Mykhailiuk, V. (2015). Study of the effects of drilling string eccentricity in the borehole on the quality of its cleaning. New Developments in Mining Engineering 2015, 591-595. https://doi.org/10.1201/b19901-102
  18. 18. Chudyk, I., Poberezhny, L., Hrysanchuk, A., & Poberezhna, L. (2019). Corrosion of drill pipes in high mineralized produced waters. Procedia Structural Integrity, (16), 260-264. https://doi.org/10.1016/j.prostr.2019.07.050
  19. Kryzhanivskyi, E. І., Nykyforchyn, H. М., Student, О. Z., Krechkovska, H. V., & Chudyk, І. І. (2020). Role of Nonmetallic Inclusions in Premature Stress-Corrosion Fractures of Drill Pipes. Materials Science, 55(6), 822-830. https://doi.org/10.1007/s11003-020-00375-4
  20. Chudyk, I., Raiter, P., Grydzhuk, Y., & Yurych, L. (2020). Mathematical model of oscillations of a drill tool with a drill bit of cutting-scraping type. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 52-57. https://doi.org/10.33271/nvngu/2020-1/052