Navigation menu:

Home

Editorial Board

Contact

Volume 3 (2019)


Influence of elastic properties of backfill on the stress field formation in multimodal massif

M. Petlovanyi1 & S. Zubko2

Purpose

Investigation into the influence of the elastic properties of a backfill massif on the stress state formation by performing computer modelling using the finite element method.

Methodology

The task of studying the stress state of the backfill massif surrounding the second-order chamber was solved by the finite element method using the SolidWorks software package by constructing and investigating a geomechanical model of a multimodal massif. Variables in the model were the depth of extraction chamber and the elastic modulus of the backfill massif. Sixteen computational experiments were performed.

Findings

Regularities of change of maximum destructive stresses in zones of decreased stability of the backfill massif depending on its elastic properties and depth of development are revealed. It is established that with increasing the depth of development, despite the increase of the elastic modulus of the backfill massif, the magnitudes of the stresses arising in its increase in polynomial dependence. It is recommended that the depth of the mining operations should not increase the elastic properties of the backfill massif because it will cause brittle destruction. It is necessary to form in backfill viscoplastic properties.

This project is a part of a regional grant from the Dnіpropetrovsk region for young scientists (2018): “Development the technology for filling underground cavities using solidifying mixtures with complex use of industrial waste”.

Keywords: stress state, backfill massif, elastic properties, computer modelling, tensile stresses.

References
  1. Кузьменко, А.М., & Петлёваный, М.В. (2014). Влияние структуры горного массива и порядка отработки камерных запасов на разубоживание руды. Геотехнічна механіка, (118), 37-45.
  2. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465-469. https://doi.org/10.1201/b17547-79
  3. Liu, G., Li, L., Yang, X., & Guo, L. (2017). Numerical Analysis of Stress Distribution in Backfilled Stopes Considering Interfaces between the Backfill and Rock Walls. International Journal of Geomechanics, 17(2), 06016014. https://doi.org/10.1061/(asce)gm.1943-5622.0000702
  4. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering, 265-269. https://doi.org/10.1201/b19901-47
  5. Kuzmenko, O., & Petlovanyi, M. (2015). Substantiation the expediency of fine gridding of cementing material during backfill works. Mining of Mineral Deposits, 9(2), 183-190. https://doi.org/10.15407/mining09.02.183
  6. Кузьменко, А.М., Петлёваный, М.В., & Усатый, В.Ю. (2010). Влияние тонкоизмельченных фракций шлака на прочностные свойства твердеющей закладки. В Матеріалах Міжнародної науково-практичної конференції «Школа підземної розробки» (с. 383-386). Дніпропетровськ: Національний гірничий університет.
  7. Битимбаев, М.Ж., Крупник, Л.А., & Шапошник, Ю.Н. (2012). Теория и практика закладочных работ при разработке месторождений полезных ископаемых. Алматы: Изд. Ассоциации ВУЗов РК.
  8. Петлеваный, М.В., Кузьменко, А.М., Горобец, Л.Ж, Прядко, Н.С., & Усатый, В.Ю. (2011). О механической активации компонентов твердеющей закладки для заполнения выработанного пространства рудников. Металлургическая и горнорудная промышленность, (3), 75-78.
  9. Emad, M.Z. (2017). Numerical modelling approach for mine backfill. Sādhanā, 42(9), 1595-1604. https://doi.org/10.1007/s12046-017-0702-0
  10. Chistyakov, E., Ruskih, V., & Zubko, S. (2012). Investigation of the Geomechanical Processes while Mining Thick Ore Deposits by Room Systems with Backfill of Worked-Out Area. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 127-132. https://doi.org/10.1201/b13157-23
  11. Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24–38. https://doi:10.33271/mining13.01.024
  12. Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., & Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, 277, 1–16. https://doi:10.4028/www.scientific.net/ssp.277.1
  13. Павлов, А.М., & Васильев, Д.С. (2016). Влияние геологической среды на качество добываемой руды Коневинского месторождения. Известия Сибирского Отделения РАЕН. Геология, Поиски и Разведка Рудных Месторождений, 4(57), 83-90.
  14. Kabwe, E. (2017). Mining Sequence Deformation and Failure Behaviour Analysis in the Hanging Wall and Orebody Rock Formations; A Continuum Approach. Geotechnical and Geological Engineering, 35(4), 1453-1473. https://doi.org/10.1007/s10706-017-0187-y
  15. Aubertin, M., Li, L., Arnoldi, S., Belem, T., Bussière, B., Benzaazoua, M., & Simon, R. (2003). Interaction between backfill and rock mass in narrow stopes. Soil and rock America, 1, 1157-1164.
  16. Xue, D., Wang, J., Tu, H., Wang, F., & Zhao, J. (2013). Deformation failure mechanism and application of the backfill along the goaf-side retained roadway. International Journal of Mining Science and Technology, 23(3), 329-335. https://doi.org/10.1016/j.ijmst.2013.05.019