Volume 2 (2018)
ELASTIC TORSION OF COMPOUND PRISMATIC BODIES WITH
CROSS-SECTIONS OF COMPLEX SHAPE
DOLGOV Alexader1 & DOLGOVA Iryna2
-
1National Technical University «Dnipro Polytechnic», Dnipro, Ukraine
-
2Pridniprovs’ka State Academy of Building and Architecture, Dnipro, Ukraine
- Phys. chem. geot. 2018
- Full text (PDF)
Purpose
Study the stress state of composite prismatic bodies with biconnected
domain under torsion
Methodology
The studies were carried out through the usage of the method of
the integral (potential) representation of the Airy stress function
Findings
For the considered boundary problem the Green function has been
constructed. The problem has been reduced to the integral equations, and this
affects the accuracy of the approximate solutions. The studies have been carried
out for the regions which boundaries do not fully coincide with the coordinate lines
of the original system that allows showing more saliently the advantage of the
method. Represented the results of the numerical implementation of the algorithm.
The analysis of the shear stresses has been carried out.
The researches were conducted within the project GP – 498, financed by
Ministry of Education and Science of Ukraine
Keywords: elastic torsion, stress, two-dimensional boundary problem, methods
of integral representation
References
- Dolgov O.M. Algorithms for solving spatial and non-stationary heat
conduction problems in mining / O.M. Dolgov, I.M. Dolgova // Форум гірників -
2016 : матеріали міжнар. наук.-практ. конф., 5 - 8 жовтня 2016 р. - Дніпро,
2016. - Т. 1. – С. 71-77.
- Арутюнян Н.Х., Абрамян Б.Л. Кручение упругих тел. – М.: Физматгиз,
1963, 686 с.
- Шимкович Д. Г. FEMAP & NASTRAN. Инженерный анализ методом
конечных элементов – M.: ДМК Пресс, 2008. – 701 с.
- Гавеля С.П. Періодичні задачі для пологих оболонок довільної
кривизни з отворами. - ДАН УРСР, 1969, А, No 8, с.703-708.
- Гавеля С.П. Про один спосіб побудови матриць Гріна для зчленованих
оболонок. - ДАН УРСР, 1969, А, No 12, с.1107-1111.
- Гавеля С.П. О сохранении разрешимости граничных задач теории
пологих оболочек при приведении их к интегральным уравнениям. - Изв.
высш. учебн. заведений. Математика, 1969, No 5, с.14-19.
- Долгова И.М., Мельников Ю.А. Построение функций и матриц
Грина для уравнений и систем эллиптического типа. – ПММ, 1978, т.42,
No 4, с.695-700.