Navigation menu:

Home

Editorial Board

Contact

Volume 2 (2018)


PHYSICAL & CHEMICAL PROCESES FOR COAL DESTRUCTION IN UNDERGROUND GAS GENERATOR

DYCHKOVSKYI Roman, FALSHTYNSKYI Volodymyr, LOZYNSKYI Vasyl & SAIK Pavlo

Purpose

Estimate the material and thermal balance for providing the chemical reactions in underground gasgenn according to physical spreads of their fluency

Methodology

Statistical processing of experimental results of work of a stand installation from underground coal gasification and their adaptation to specific mining-geological conditions of their possible use.

Findings

The current methods of calculation of safety mining parameters for underground coal gasification are described and analyzed. The possibility of generator gas (methane, oxides of carbon and other) extraction in from coal deposits destruction is considered. Experimental data on the application of hydrodynamic impact on a gas-saturated outburst coal seam and reducing gasodynamic activity are defined. The technological schemes of providing the pipelines stability that includes emergency protection and monitoring in on-line regime are proposed. Also is proposed and examined on special test installation the utilization of mining wastes in closed cycle of gasgenn. To determine correlations of safety mining parameters are used the calculation and analytical method based on numerical definitions of rockmass deformations. The recommendations for physical and chemical coal destruction are done based on economical indexes and environmental protection.

Keywords: underground coal gasification, mining, mining-geological conditions

References
  1. Дичковський Р.О. (2015). Формування двошарової штучноствореної оболонки геореактора при свердловинній підземній газифікації. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37 - 42.
  2. Gasenko, V.G.,, Sobolev, V.V. Evolution of finite perturbations in a viscoelastic relaxing liquid with gas bubbles // Fluid Dynamics. 10, Issue 3, May 1975, Pages 409-414.
  3. Pivnyak, G,G, Dychkovskyi R.O, Falshtynskyi, V.S. and Cabana, Cáceres Edgar. (2017) Energy Efficiency and Economic Aspects of Mining Wastes Utilization within the Closed Cycle of Underground Gas Generator. Advanced Engineering Forum, 25, 1-10. doi:10.4028/www.scientific.net/AEF.25.1
  4. Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S. and Saik, P.B. (2015). Revisiting possibility to cross the disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22-27
  5. Falshtynskyi V.S., Dychkovskyi R.O., Saik P.B., Lozynskyi V.H., Cabana E.C. (2018). Substantiation into “rock massive – underground gasifier” system adaptability of Solenovskyi site in the Donetsk coal basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 14-21. DOI: 10.29202/nvngu/2018-3/5
  6. Pivnyak, G., Dychkovskyi, R, Bobyliov, O., Cabana, C.E., Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, (277), 1-16. doi: https://doi.org/10.4028/www.scientific.net/SSP.277.1
  7. Caceres, E. and Alca, J.J. (2016). Potential For Energy Recovery From A Wastewater Treatment Plant. IEEE Latin America Transactions, 14(7), 3316-3321. doi:10.1109/tla.2016.7587636
  8. Caceres, E., Alca, J.J. (2016). Rural Electrification Using Gasification Technology: Experiences and Perspectives. IEEE Latin America Transactions. 14(7), 3322 – 3328. DOI: 10.1109/TLA.2016.7587637
  9. Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197. doi:10.1016/j.acme.2018.01.012
  10. Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Colletion -Mining of Mineral Deposits 2013, 125-132. doi:10.1201/b16354-23
  11. Falshtynskyi, V. (2012). New method for justification of the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 201- 208. doi:10.1201/b13157-35
  12. Xin, L., Wang, Z., Wang, G., Nie, W., Zhou, G., Cheng, W. and Xie, J. (2017): Technological aspects for underground coal gasification in steeply inclined thin coal seams at Zhongliangshan coal mine in China. Fuel, 191, 486-494. doi:10.1016/j.fuel.2016.11.102
  13. Zhao, Jing. (2010): Research on improving ecological compensation mechanism of mineral resources development. International Conference on E- Health Networking Digital Ecosystems and Technologies (EDT), 2, 567- 571.doi:10.1109/edt.2010.5496460
  14. Pivnyak, G., Dychkovskyi, R., Smirnov, A. and Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1-10. doi:10.1201/b16355-2
  15. Singh, S.K. and Jayanthu, S. (2011): Implication of continuous miner in room and pillar mining for mass exploitation of underground coal deposits: An overview. Journal of Mines, Metals and Fuels, 59(3-4), 83-95